Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces
نویسندگان
چکیده
Protein detection using biologically or immunologically modified field-effect transistors (bio/immunoFETs) depends on the nanoscale structure of the polymer/protein film at sensor interfaces (Bhushan 2010 Springer Handbook of Nanotechnology 3rd edn (Heidelberg: Springer); Gupta et al 2010 The effect of interface modification on bioFET sensitivity, submitted). AlGaN-based HFETs (heterojunction FETs) are attractive platforms for many protein sensing applications due to their electrical stability in high osmolarity aqueous environments and favourable current drive capabilities. However, interfacial polymer/protein films on AlGaN, though critical to HFET protein sensor function, have not yet been fully characterized. These interfacial films are typically comprised of protein–polymer films, in which analyte-specific receptors are tethered to the sensing surface with a heterobifunctional linker molecule (often a silane molecule). Here we provide insight into the structure and tribology of silane interfaces composed of one of two different silane monomers deposited on oxidized AlGaN, and other metal oxide surfaces. We demonstrate distinct morphologies and wear properties for the interfacial films, attributable to the specific chemistries of the silane monomers used in the films. For each specific silane monomer, film morphologies and wear are broadly consistent on multiple oxide surfaces. Differences in interfacial film morphology also drive improvements in sensitivity of the underlying HFET (coincident with, though not necessarily caused by, differences in interfacial film thickness). We present a testable model of the hypothetical differential interfacial depth distribution of protein analytes on FET sensor interfaces with distinct morphologies. Empirical validation of this model may rationalize the actual behaviour of planar immunoFETs, which has been shown to be contrary to expectations of bio/immunoFET behaviour prevalent in the literature for the last 20 years. Improved interfacial properties of bio/immunoHFETs have improved bio/immunoHFET performance: better understanding of interfaces may lead to mechanistic understanding of FET sensor properties and to clinical translation of the immunoFET platform. S Online supplementary data available from stacks.iop.org/JPhysD/44/034010/mmedia
منابع مشابه
Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces.
Proteins on biomicroelectromechanical systems (BioMEMS) confer specific molecular functionalities. In planar FET sensors (field-effect transistors, a class of devices whose protein-sensing capabilities we demonstrated in physiological buffers), interfacial proteins are analyte receptors, determining sensor molecular recognition specificity. Receptors are bound to the FET through a polymeric int...
متن کاملThe Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films
In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017 (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...
متن کاملTuning the interfacial properties of grafted chains with a pH switch.
Environmentally responsive, water-soluble polymers have a wide variety of uses ranging from drug delivery to viscosity modifiers. Their utility lies in the ability to use environmental perturbations to dramatically alter the material properties. Here, we describe the interfacial properties of a hydrophobically modified copolymer of N-isopropylacrylamide and glycinylacrylamide (NIPAM-N-Gly-(C18)...
متن کاملRole of Interfacial Interactions on the Anomalous Swelling of Polymer Thin Films in Supercritical Carbon Dioxide
It has recently been shown that thin polymer films in the nanometer thickness range exhibit anomalous swelling maxima in supercritical CO2 (Sc-Co2) in the vicinity of the critical point of CO2. The adsorption isotherm of CO2 on carbon black, silica surfaces, porous zeolites, and other surfaces, is known to exhibit anomalous maxima under similar CO2 conditions. It is believed that because CO2 po...
متن کاملInterfacial Compatibility of Polymer-based Structures in Electronics
Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle ...
متن کامل